函数f(x)在【0,1】上连续可微,证明:lim n->无穷 n积分符号(0——1) x^n f(x)dx=f(1)
人气:359 ℃ 时间:2019-10-09 11:55:03
解答
对∫(0到1) x^nf(x)dx用分部积分法,∫(0到1) x^nf(x)dx=1/(n+1)×∫(0到1) f(x)dx^(n+1)=f(1)/(n+1)-1/(n+1)×∫(0到1) x^(n+1) f'(x)dx,对∫(0到1) x^(n+1) f'(x)dx用积分第一中值定理,存在b∈(0,1),使得∫(0到1)...
推荐
- f(x)在[0,+∞)内连续,且lim(x→+∞)f(x)=1.证明函数y=e^(-x)∫(0,x)e^tf(t)dt满足方程dy/dx+y=f(x)
- 设函数f 在[a,b]上连续,M=max|f(x)|(a
- 设f是[0,1]上的连续函数,证明lim(n趋向于正无穷)n∫(从0到1)x^nf(x)dx=f(1)
- 证明:若函数f(x)和g(x)在区间[a,b]上连续,则有│ ∫ f(x)dx│≤∫ │f(x)│dx. ∫ 符号的上下分别是b,a
- 求函数f(x)在[0,a]上非负,且f(0)=0,f^2(x)>0,证明:积分符号(a,0)xf(x)dx>2a/3积分符号(a,0)f(x)dx
- come up with a good idea这个翻译有问题么?
- 一个数的3分之2是24,它的9分之2是什么 A 8 B 24 C 12
- 使至塞上体现王维的诗有什么特点
猜你喜欢
- 他投进了一个球用英语怎么说
- 怎样促进班级团结(初一)
- 长方形的体积一定 底面积和高 说明理由 说明是什么比例
- 解关于x的不等式:ax-(a+1)x+1<0
- 四棱锥P-ABCD中,PA垂直于面ABCD,AB=4,BC=3,AD=5,角ABC=角DAB=90°,E为CD中点,
- 欲使含有少量水蒸气、氢气、CO、二氧化碳的氮气,可以使混合气体先通过足量的————,再通过————,最后通过浓——.
- 已知a=3m-2n,b=(x+1)m+8n,a≠0,若a平行b,求实数x
- 如图:在△ABC中,AD是它的角平分线.求证:S△ABD:S△ACD=AB:AC.