设A是(n≥2)阶方阵,A*是A的伴随矩阵.证明:
(1)r(A*)=n的充分必要条件是r(A)=n
(2)r(A*)=1的充要条件是r(A)=n-1
(3)r(A*)=0的充要条件是r(A)<n-1
人气:263 ℃ 时间:2019-08-22 16:10:35
解答
1) r(A)=n等价于det(A)≠0等价于det(A*)=1等价于 A*可逆 等价于r(A*)=n
2)
推荐
- 设A为n阶方阵,A*为A的伴随矩阵,证明:n,r(A)=n r(A*)= 1,r(A)=n-1 0,r(A)
- 设n阶方阵A的伴随矩阵为A*,证明:(1)若|A|=0,则|A*|=0;
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 设A,B为n阶方阵,E为n阶单位矩阵,证明:若A+B=AB,则A-E可逆.
- 伴随矩阵:设A是(n>=2)阶方阵,A*是A的伴随矩阵,证明:r(A*)=n的充要条件是r(A)=n-1.
- 寻找关于友谊的文章
- The ---- (music)are my friends.
- 求经过点P(-2,3)且与椭圆9x方+4y方=36有共同焦点的椭圆的标准方程
猜你喜欢