是否存在实数a,使得函数y=sin^2x+acosx+5a/8-3/2在闭区间[0,π/2]上的最大值为1
人气:193 ℃ 时间:2020-05-12 20:09:21
解答
y=sin^2x+acosx+5a/8-3/2=1-cos²x+acosx+5a/8-3/2=-(cosx-a/2)²+a²/4+5a/8-1/2∵0≤x≤π/2,∴0≤cosx≤11)当0≤a≤2时,则 cosx-a/2=0Y的最大值为:a²/4+5a/8-1/2=1即2a²+5a-12=0解a=3/2,a...
推荐
- 是否存在一个实数a,使得函数Y=SIN∨2 X+ Acosx+5/8 a-3/2,在闭区间[0,π/2]上的最大值是1?若存在,求出对应的a,若不存在,说明理由
- 是否存在实数a,使得函数y=sin^2x+acosx+(5/8)a-(3/2)在闭区间[0,π/2]上的最大值是1?若存在,求出对应的a值,若不存在,试说明理由
- 求函数y=sin^2x+acosx+5a/8-3/2(0
- 是否存在实数a,使得函数y=sin²x+acosx+5a/8-3/2在闭区间[0,π/2]上的最大值是1,
- 是否存在实数a,使得函数y=sin2x+acosx+5/8a-3/2在闭区间[0,二分之派]上的最大值是1?
- .一正项等比数列前11项的几何平均值为32.从这11项中抽去一项后所剩10项的几何平均值仍是32.
- 在静水中船速为20m每分钟,水流的速度为10m每分钟,若船从岸边出发,垂直于水流航线到达对岸的,问船行进的方向是 ? 求解,答案是与水流方向夹角120°不懂
- f(x)=√3 sin2x-2sin²x 怎么化简,
猜你喜欢