设B为塔正东方向一点,AE为塔,沿南偏西60°行走40m后到达C处,即BC=40,且∠CAB=135°,∠ABC=30°,如图,在△ABC中,
| AC |
| sin∠ABC |
| BC |
| sin∠CAB |
∴AC=20
| 2 |
由点A向BC作垂线AG,此时仰角∠AGE最大,等于30°,
在△ABC中,
| 1 |
| 2 |
| 1 |
| 2 |
∴AG=
| AC•BC•sin∠ACB |
| BC |
| 3 |
∴在△AEG中,
塔高AE=AG•tan30°=
| ||
| 3 |
| 3 |
10
| ||
| 3 |
故答案为:10-
10
| ||
| 3 |
设B为塔正东方向一点,AE为塔,沿南偏西60°行走40m后到达C处,即BC=40,且∠CAB=135°,∠ABC=30°,| AC |
| sin∠ABC |
| BC |
| sin∠CAB |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| AC•BC•sin∠ACB |
| BC |
| 3 |
| ||
| 3 |
| 3 |
10
| ||
| 3 |
10
| ||
| 3 |