(1)因为n+3m2=0时,f(x)=x²+mx-3m²lnx.则:
f'(x)=(2x²+mx-3m²)/x=(2x+3m)(x-m)/x
令f'(x)=0,得:x=m,x=-3m/2
因为:x>0,m>0
所以 x=-3m/2舍去,即:x=m.
①当m>1时,f(x)在(1,m)上单调递减,在(m,+∞)上单调递增
∴当x=m时,fmin(x)=2m²-3m²lnm.
令2m²-3m²lnm=0,得:m=e^2/3.
②当0<m≤1时,f'(x)≥0在x∈[1,+∞)上恒成立,f(x)在x∈[1,+∞)上为
增函数,当x=1时,fmin(x)=1+m.
令m+1=0,得m=-1(舍).
综上所述,所求m为e^2/3.
(2)不好意思,!