∴AB=
| AC2+BC2 |
∵CA1⊥AB,
∴CA1=
| AC•BC |
| AB |
| 12 |
| 5 |
| AC |
| AB |
| 4 |
| 5 |
∵A1C1⊥BC,
∴∠CA1B=∠A1C1B=90°,
∴∠CA1C1+∠A1CB=∠B+∠A1CB=90°,
∴∠CA1C1=∠B,
同理:∠AnCnAn+1=∠B,
∴cos∠AnCnAn+1=
| CnAn+1 |
| AnCn |
| 4 |
| 5 |
故答案为:
| 12 |
| 5 |
| 4 |
| 5 |
| CnAn+1 |
| AnCn |

| AC2+BC2 |
| AC•BC |
| AB |
| 12 |
| 5 |
| AC |
| AB |
| 4 |
| 5 |
| CnAn+1 |
| AnCn |
| 4 |
| 5 |
| 12 |
| 5 |
| 4 |
| 5 |