∴AB=
AC2+BC2 |
∵CA1⊥AB,
∴CA1=
AC•BC |
AB |
12 |
5 |
AC |
AB |
4 |
5 |
∵A1C1⊥BC,
∴∠CA1B=∠A1C1B=90°,
∴∠CA1C1+∠A1CB=∠B+∠A1CB=90°,
∴∠CA1C1=∠B,
同理:∠AnCnAn+1=∠B,
∴cos∠AnCnAn+1=
CnAn+1 |
AnCn |
4 |
5 |
故答案为:
12 |
5 |
4 |
5 |
CnAn+1 |
AnCn |
AC2+BC2 |
AC•BC |
AB |
12 |
5 |
AC |
AB |
4 |
5 |
CnAn+1 |
AnCn |
4 |
5 |
12 |
5 |
4 |
5 |