已知椭圆x^2/25+y^2/9=1内有一点(4,-1)F为右焦点,M为椭圆上一动点,MA+MF的最小值(详解)
人气:478 ℃ 时间:2019-08-22 12:01:58
解答
设N为左焦点,则:MF+MN=2a=10,从而有:
MA+MF=MA+(10-MN)=10+(MA-MN)
考虑到|MA-MN|≤AN,即:-AN≤MA-MN≤AN,即:MA-MN的最小值是-AN,所以:
MA+MF=10+(MA-MN)的最小值是10-AN=10-√63=10-3√7你算错了设N为左焦点,则:MF+MN=2a=10,从而有:MA+MF=MA+(10-MN)=10+(MA-MN)考虑到|MA-MN|≤AN,即:-AN≤MA-MN≤AN,即:MA-MN的最小值是-AN,所以:MA+MF=10+(MA-MN)的最小值是10-AN=10-√65【注:算错了AN的大小,AN=√65而不是√63】
推荐
- 已知定点A(-2,√3),F是椭圆x^2/16+y^2/12=1的右焦点,点M在椭圆上移动,则当│AM│+2│MF│取最小值时,点M的
- A为(-2,√3),F是椭圆x²/16+y²/12=1的右焦点,点M在椭圆上,求MA+MF的取值范围
- 已知椭圆 X^2/25+Y^2/9=1 椭圆内有点B(2,2)焦点F,椭圆上一点M,求MF+MB的最大值和最小值
- 已知A(-2,根号3),F是椭圆x^2/16+y^2/12=1的右焦点,M在椭圆上移动,求MA+MF的最大值和最小值,
- 已知定点A(-2,√3),F是椭圆x^2/16+y^2/12=1的右焦点,在椭圆上求一点,使|AM|+2|MF|取得最小值
- 如图,在△ABC中,AB=12,AC=8,AD是BC边上的中线,则AD的取值范围是_.
- 修一条路,第一天修了全长的5分之2,第2天修了2千米,还剩全长的一半没有修,这条路全长多少千
- 下列哪个动物造型融入了奥运会吉祥物福娃?大熊猫 亚洲象 华南虎 金丝猴
猜你喜欢