A为方阵,它的每一行每一列都只有一个元素非零,且为1或-1,证明存在正整数k,A^k=E(单位矩阵)
人气:467 ℃ 时间:2020-06-15 22:25:25
解答
注意A的列实际上就是单位阵的n个列向量的一个排列而已(不计正负号),也就是说Ae1=正负ej1,Ae2=正负ej2,...,Aen=正负ejn,其中e1 e2...,en是单位阵的n个列.因此存在整数k1使得A^(k1)e1=正负e1,A^(k2)e2=正负e2,...,A^(kn)en=正负en,取k1,k2,...,kn的最小公倍数k,则A^kei=正负ei,i=1,2,...,n.因此A^(2k)ei=ei,i=1,2,...,n,即A^(2k)=E.
推荐
- A为n阶方阵,证明:若存在正整数k使A^k=0,则A的特征值只能是0
- 设A为n阶方阵,对其正整数k>1,A^k=0,证明:(E-A)^(-1)=E+A+A^2+,+A^(k-1)
- 设n方阵A满足A^2=A,E为n阶单位矩阵,证明R(A)+R(A-E)=n
- 设矩阵A^k=0矩阵(k为正整数),证明(E-A)^(-1)=E+A+A^2+...+A^(k-1)
- 设A是n阶方阵,若有正整数k,使得A^k=E,证明A相似于对角矩阵
- 在原子中,下列关系不成立的是 a:质子数=电子数 b:质子数=中子数 C:核电荷数=质子数 B:核电荷数=电子数
- 有一个笼子里有鸡兔共35只,有脚94只,问鸡和兔各有多少只?
- 通Z轴和点(-3,1,-2)的平面方程
猜你喜欢