如图,已知在平行四边形ABCD中,E,F分别是AD的中点,G,H是对角线BD上的两点,且BG=DH,则能求出什么结论?
人气:107 ℃ 时间:2019-11-22 19:51:55
解答
解 : △GFB≌△HED证明 :∵ABCD是平行四边形 ∴1/2BC=1/2AD BF=ED ∵BC//AD ∴∠CBD=∠BDA在△GFB与△HED中BG=DH∠CBD=∠BDA...
推荐
- 已知:如图,在平行四边形ABCD中,E、F分别是AD、BC的中点,G、H是对角线BD上的两点,且BG=DH
- 如图,已知在平行四边形ABCD中,E,F分别是AD的中点,G,H是对角线BD上的两点,且BG=DH,则能求出什么结论?
- 如图,在平行四边形ABCD中,E、F分别是BC、AD边的中点,G.H是对角线BD上的两点,BG=DH,求证:
- 平行四边形ABCD EF为AD.BC中点GH是对角线BD上两点BG=DH求证EGFH为平行四边形
- 如图所示,平行四边形ABCD中,E、F分别是AD、BC的中点,延长AB、CD,使BG=DH.求证:四边形EGFH是平行四边形.
- 如图,在三角形ABC在中,BD是角ABC的平分线,CD是角ACE的平分线,试探索角D与角A的数量关系,并说明理由.
- 太平洋周围有那几个洲?大西洋边上呢?
- 1mol氧气有机NA氧原子
猜你喜欢
- 丰乐亭游春一得思想感情
- 汽水是怎样发明的?
- 决定蛋白质分子结构多样性的重要因素有哪些?
- Feel like可以加adj.
- 定义在(-1,1)上的奇函数f(X)是减函数,f(1-a)+f(1-3a)
- 与小朋友们在田野里游玩的作文,300字左右,是夏天,突出田野里的景色
- 美国莱特兄弟于1903年十二月七日,驾驶动力飞机成功的遨游蓝天,人们为什举行了盛大酒会.主持人邀请莱特兄弟发表演说,兄弟俩再三推辞,主持人执意邀请,哥哥便了意味深长的一句话:"据我所知,鸟中最会说话的是鹦鹉,而鹦鹉是永远飞不高的."
- 这句英语含宾语补足语吗