在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,点P处的切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为______.
人气:389 ℃ 时间:2020-04-03 18:37:50
解答
根据题意设P的坐标为(t,-t3+1),且0<t<1,求导得:y′=-3x2,故切线的斜率k=y′|x=t=-3t2,所以切线方程为:y-(-t3+1)=-3t2(x-t),令x=0,解得:y=2t3+1;令y=0,解得:x=2t3+13t2,所以△AOB的面积S=12(2...
推荐
- 在平面直角坐标系xOy中,点P是第一象限内曲线y=-x3+1上的一个动点,点P处的切线与两个坐标轴交于A,B两点,则△AOB的面积的最小值为_.
- 在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线斜率为2,则点P的坐标为_.
- 在平面直角坐标系xoy中,点P是第一象限内曲线y=-x^2+1上的一个动点,点P处的切线与两个坐标轴交于AB两点,则三角形AOB的面积的最小值为多少
- 在平面直角坐标系xOy中,点P在曲线C:y=x3-10x+3上,且在第二象限内,已知曲线C在点P处的切线的斜率为2,则点P的坐标为( ) A.(2,2) B.(-2,2) C.(2,-9) D.(-2,15)
- 在直角坐标系xOy中,过双曲线x2a2−y2b2=1(a>0,b>0)的左焦点F作圆x2+y2=a2的一条切线(切点为T)交双曲线右支于点P,若M为FP的中点.则|OM|-|MT|等于( ) A.b-a B.a-b C.a+b2 D.a+
- 用函数观点看一元二次方程 1、 二次函数y= -x2+4x的值为2,求自变量x的值, 可以看作是解一元二次方程____
- 一个长方形,宽是6厘米,如果宽增加4厘米,面积就增加56厘米2,原来长方形的面积是多少?
- 英美法资产阶级革命的成果,并逐一说明其作用
猜你喜欢