设向量a,b满足|a|=|b|=|a+b|=1则|a-tb|(t∈R)最小值是?
人气:497 ℃ 时间:2020-03-27 18:05:49
解答
|a+b|²=|a|²+2ab+|b|²=1+2×1×1×cos(a,b)+1=1
∴cos(a,b)=-1/2
∴|a-tb|²=|a|²-2tab+|tb|²=1-2t×1×1×(-1/2)+t²=t²+t+1=(t+1/2)²+3/4≥3/4
∴|a-tb|(t∈R)最小值是√3/2
推荐
- 若向量a为(2,1)b为(1,2),当a+tb的模取最小值时,求t的值
- 设向量a,b满足|a|=|b|=|a+b|=1,则|a-tb|(t∈R)的最小值为( )
- 设向量a=(cos55,sin55),b=(cos25,sin25),若t是实数,则ㄧa-tbㄧ的最小值为
- 设向量a,b满足 | a| =| b|=1,a*b=m,则 | a+tb |(t为R)的最小值为
- 已知向量a=[-1,2],b=[ 1,1],t€R,求a与b夹角的余弦值,求|a+tb|的最小值及相应的t值.
- Would you like some more chicken?No,I have had___ A full B enough C enough full
- 已知定义在R上的奇函数f(x)和偶函数g(x)满足f(x)+g(x)=a的x次方-a的负x次方+2,
- 数a除以数b,商是5,那么数a和数b的比是?
猜你喜欢